
Web Services

Lorna Mitchell
Freelance PHP consultant
@lornajane
http://lornajane.net

“I see the world from the command line.”

What is a “web service?”
• Expose information
• Expose functionality
• Client = machine
• Create clean HTTP boundaries
• Enable separate scaling

Use curl – eliminates points of failure

http://www.lornajane.net/posts/2008/Curl-Cheat-Sheet

Every service should have a heartbeat
• flickr.test.echo
• Echo passed params
• Stop idiot DOS reports

Every service should have documentation, (real) examples, and a support mechanism

HTTP
• Use the headers

◦ Accept and Content-Type – content format negotiating – pay attention
▪ text/html accept – useful for debugging
▪ Support multiple formats!
▪ Parse prioritized list (http://arbitracker.org – src/classes/request/parser.php)

◦ User-Agent – what made the request? Tailor response to client
◦ Set-Cookie and Cookie – working with cookie data – can be a nice addition to a service

• Use the status codes
◦ 200 OK
◦ 302 Found
◦ 301 Moved
◦ 401 Not Authorized – confused w/403 – “I don't know who you are”
◦ 403 Forbidden – “I know who you are and am NOT letting you in”
◦ 404 Not Found

http://lornajane.net/
http://arbitracker.org/
http://www.lornajane.net/posts/2008/Curl-Cheat-Sheet

◦ 500 Internal Server Error – “Go read your logs”
• Use the verbs

◦ GET - read
◦ POST - create
◦ PUT - update
◦ DELETE – delete

Give consumers a choice of formats
• Detect header, parameter override
• JSON, XML, HTML, ?

Include a version parameter

Statelessness
• BAD: toggle (joindin API “I'm attending”)
• Self-contained, complete, requests
• Repeatable and predictable

Consuming from PHP
• file_get_contents – GET requests
• CURL (yuck)
• Pecl_HTTP (yum)

Service Types
• RESTful

◦ Multiple endpoints (URL for each method)
◦ HTTP verbs indicate the operation
◦ More religious zealots (“HTTP Web Service” vs “RESTful Service”)
◦ Typically supports CRUD operations on multiple entities

▪ /user/add
▪ /user/3/profile
▪ /user/3/delete
▪ …

◦ Hypermedia – providing links to related items/collections
▪ Can change URLs easily
▪ Self-documenting

◦ Create: POST: HTTP 201 Created + Location header / HTTP 400 if create fails
◦ Update: PUT: HTTP 204 OK / HTTP 400 if update fails

▪ parse_str(file_get_contents('php://input'), $data);
◦ Read: GET: HTTP 200 or 302 (if moved) / HTTP 404 if not found
◦ Delete: DELETE: HTTP 200 (always)

• RPC
◦ XML-RPC (Flickr), JSON-RPC

▪ Single endpoint
▪ Method names
▪ Method params
▪ Return value
▪ “RPC that uses XML” vs true “XML-RPC” (cf. Wikipedia)

◦ SOAP
▪ Subset of XML-RPC
▪ Optional WSDL (complicated)

• Don't write by hand
• Can be generated from PHPDoc comments
• Read backwards

1. Namespaces
2. Definitions
3. Data types
4. Functions
5. Endpoint

▪ Easy to publish own SOAP service from a PHP class (PHP Soap libs well-written)
▪ Response is the same as calling the class locally
▪ Hard to debug

• trace=1 in the options
• getLastRequest*, getLastResponse* methods
• Wireshark
• Charles Proxy (can help with debugging over https)
• CURL
• SoapUI (http://soapui.org)

▪ Well-known
▪ Well-supported in other langs
▪ Very verbose on data formats which can cause cross-language problems

Make your service as good as possible
• Naming conventions
• Parameter validation
• Parameter order consistency

Access Control
• Username/password with every request – only over https
• Login action, token – just like normal sessions
• OAuth

Error Handling defines API quality
• “Golden rule”: use expected response format for errors (don't croak in HTML if the user asked

http://soapui.org/

for JSON or XML)
• Bundle multiple errors (esp. parameter validation errors)
• Give helpful error messages
• Be consistent

Reliability is key
• Unit testing
• Source control
• Heartbeat monitoring
• Automated deployment

Documentation
• You can never know who in advance your users will be
• Provide a quick-start for the impatient
• Provide real-life working examples

http://www.slideshare.net/lornajane/web-services-tutorial
http://bit.ly/emRpYT
http://joind.in/talk/view/3338

Frontend Caching
Helgi

Pareto Principle (80/20 rule)
20% of the effort produced 80% of the results

80% of response time is spent downloading resources

Rules of Web Performance

1. Weight
2. Time
3. Processing
4. Perception

◦ Responsiveness
◦ Amazon
◦ Make people think your site is fast
◦ 50% of users arrive with an empty cache

Cookies
• Cookies are sent with static content – huge cookies are bad for performance

http://bit.ly/emRpYT
http://www.slideshare.net/lornajane/web-services-tutorial
http://joind.in/talk/view/3338

• Upload speeds are much slower than download speeds
• Limit cookie usage to domains that need them
• Expire cookies

Parallel Downloads
• Browsers have per-domain concurrent download limits
• IE6/7 – 2 concurrent downloads max (browserscope.org)
• Use multiple static domains (CNAME records)
• Static domains don't use cookies
• Can cause problems if overdone (DNS thrashing – CPU spikes)
• 2-4 subdomains is a good average

Combine Files (judiciously)
• Challenge – dev separate modules
• Challenge – loading more than needed

Javascript
• Breaks parallel download rules
• script defer adversely affects older versions of Firefox

Lazy Loading
• Load above the fold first

Minify Javascript and CSS
• Javascript

◦ UglifyJS (uses Node.JS)
◦ Google Closure
◦ YUI Compressor
◦ Dogo Shrinksafe
◦ JSMin

• CSS
◦ YUI Compressor
◦ minifycss.com
◦ OOCSS

Gzip compression
• Works well on any text data
• Don't use on binary files

Save HTTP 404 bandwidth
• robots.txt
• favicon

Images
• Don't oversize favicon
• Badly optimized
• Don't cheat on thumbnails

• Better compression tools
◦ OptiPNG
◦ pngwolf
◦ pngcrush
◦ jpegtran

CSS Sprites
• Combine images
• Use CSS positioning
• Hard to maintain long-term

Resource Packages
• JAR file that contains everything
• Standardization WIP

SSL
• Latest OpenSSL has Google performance patches

Test with slower connections

Use a CDN

Reverse Proxies
• Alternative to etags for server farms
• Varnish, Nginx, Squid
• http://bit.ly/query_rev_comp

Tools
• Firebug
• Yslow
• PageSpeed
• Chrome Inspector
• HTTPWatch.com
• WebPageTest.com
• HTTPArchive.org
• Yottaa.com
• WonderProxy.com
• pagespeed.googlelabs.com
• BrowserScope.com
• html5boilerplate.com
• Diffable (http://code.google.com/p/diffable/)
• mod_pagespeed

http://bit.ly/query_rev_comp

	Web Services
	Frontend Caching

